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Abstract

Lisp had not been good at numerical computations for their exotic design. This situation is however
said to have been changed recently, because by giving appropriate declarations, modern Lisp compilers
can generate good code for numerical computation competitive with traditional compilers of Fortran
and C. Nevertheless, there is still a significant difference between those generated codes in the sense
of execution efficiency. In this report, we investigate what is the sources of the significant difference
for the three major Common Lisp implementations, ACL (Allegro Common Lisp 8.1), SBCL (Steel
Bank Common Lisp 1.0.23), and LispWorks (6.0).
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1 Introduction

To clarify our point of view on this Lisp compiler evaluations, we briefly summarize typical processes of
traditional optimizing compilers.

1. Basic block and flow graph

The instruction sequence of a program can be divided into blocks where each block is a subsequence
of the sequence including just one branch instruction at the end. This blocks are called basic blocks.
And then the program can be regarded as a directed graph consisting of the basic blocks as nodes
and links corresponding to branches between source and destination basic blocks. This graph is
called flow graph.

2. Data flow analysis

Typical optimizing compilers firstly translate a given program into the flow graph of it, and then
implement processes of optimizations and code generation as transformations on the flow graph.
To generate better object codes, the processes need various static analysis. Those analyses are
generically called data flow analysis. Flow graph is one of the most suitable expression for such
analysis.

3. Code optimization

Instructions in the flow graph of a given program are usually independent from target machine
instructions and are thus called intermediate codes. Translating the intermediate codes into more
efficient ones without changing the semantics of the program is called code optimization. We will
investigate which Lisp compiler does which code optimization. The mentioned code optimizations
are following very basic ones.

(a) constant folding
Replacing compile-time computable subexpressions with their values

(b) constant propagation
Replacing variables of constant values with their values

(c) common-subexpression elimination
Reducing redundant evaluations for subexpressions that evaluate to the same value

(d) loop-invariant hoisting
Hoisting expressions in a loop that evaluate to the same value each time out of the loop

Code optimizations done within a basic block, such as constant folding, are called local optimizations,
while done for entire flow graph are called global optimizations. Constant propagation can be local
(local constant propagation) or global (global constant propagation). The former is easy but the
latter requires a data flow analysis to find a variable whose value is always a constant at a point.
Common-subexpression elimination also can be local or global and the global version requires another
data flow analysis.

4. Instruction selection

After code optimizations for a given flow graph, instruction selection phase rewrite the intermediate
codes of the flow graph in the real target machine instructions. This is one of the most important
part of code generators.

Instead of writing this part by hand for a given target machine, compilers with a code generator
generator that generates the instruction selection part of the compiler for the target machine from
its machine description is called retargetable compilers. For example, GCC is one of the most widely
used powerful C compiler.

The machine description for a target machine in fact includes not only the definition of the instruc-
tions but various target machine dependent information, such as the structure of registers and their
usage, the bit width of integers, etc. And the description is translated into instruction selection
module and the other modules depending on the target machine. Finally, these generated modules
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are linked together with target machine independent modules to make the compiler for the target
machine.

Machine description
Machine description compiler- Instruction selector, etc

Since the instruction selector of a compiler is a complex program, writing it by hand is a messy
work and thus may make serious bugs. This is very true when the compiler tries to make use of
the instructions skillfully for a eccentric CISC machine, such as X86. On the other hand, recent
retargetable compiler technology is mature and can provide methods to generate almost optimal
instruction selector form a given target machine description. In particular, employing a dynamic
programming based code generator with automatic code generator generator is the current trend.

5. Register allocation

At the final stage of code generation, variables of intermediate langrage, called virtual registers, are
replaced with real registers of target machine. This process is called register allocation. This is one
of the most important part of code generators along with instruction selection. Therefore, various
approachs have been proposed, studied, and implemented. And a method called graph coloring
allocator is the current trend.

For a given flow graph, this method firstly collects constraint conditions imposed on possible register
assignment using a data flow analysis, called liveness analysis, and builds a graph expressing the
constraint conditions. By this graph, register allocation problem can be regarded as a graph coloring
problem that assigns colors (real registers) to nodes (virtual registers) under the condition that each
adjacent nodes have different colors. Finally, graph coloring allocator solves this coloring problem
by employing graph theoretic techniques.

Although the graphs usually requires huge memory and the data flow analysis has high computational
cost, this method achieves very good allocations. Thus this method is the current standard for
optimizing compilers.

2 Circumstances of Lisp

In this section, we describe why Lisp is not good at numerical computations. The following code is written
by a C programmer to add two integers.

(defun int-add-1 (x y)
(+ x y))

ACL Lisp compiler generates the following long object code (another compiler should generate similar
long code). The C programmer will feel faint.

0: 55 pushl ebp
1: 8b ec movl ebp,esp
3: 83 ec 28 subl esp,$40
6: 89 75 fc movl [ebp-4],esi
9: 89 5d e4 movl [ebp-28],ebx
12: 39 a3 be 00 cmpl [ebx+190],esp

00 00
18: 76 03 jbe 23
20: ff 57 43 call *[edi+67] ; SYS::TRAP-STACK-OVFL
23: 83 f9 02 cmpl ecx,$2
26: 74 03 jz 31
28: ff 57 8b call *[edi-117] ; SYS::TRAP-WNAERR
31: 80 7f cb 00 cmpb [edi-53],$0 ; SYS::C_INTERRUPT-PENDING
35: 74 03 jz 40
37: ff 57 87 call *[edi-121] ; SYS::TRAP-SIGNAL-HIT
40: 8b d8 movl ebx,eax
42: 0b da orl ebx,edx
44: f6 c3 03 testb bl,$3
47: 75 0e jnz 63
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49: 8b d8 movl ebx,eax
51: 03 da addl ebx,edx
53: 70 08 jo 63
55: 8b c3 movl eax,ebx
57: f8 clc
58: c9 leave
59: 8b 75 fc movl esi,[ebp-4]
62: c3 ret
63: 8b 5f 8f movl ebx,[edi-113] ; EXCL::+_2OP
66: ff 57 27 call *[edi+39] ; SYS::TRAMP-TWO
69: eb f3 jmp 58
71: 90 nop

SYS::TRAP-STACK-OVFL , SYS::C INTERRUPT-PENDING , and EXCL::+ 2OP are overflow checking function,
interrupt checking function, and addition function, respectively.

2.1 Interactive environment

Good interactive environment is an attractive point of Lisp. To keep this, compiler must insert some
additional code, such as stack overflow checking and interrupt checking, in object code. But we want to
remove such codes from the final product. This can be done by the following declaration.

(defun int-add-2 (x y)
(declare (optimize (speed 3) (safety 0) (debug 0)))
(+ x y))

Even after removing such codes, generated code is still long.

0: 8b d8 movl ebx,eax
2: 0b da orl ebx,edx
4: f6 c3 03 testb bl,$3
7: 75 0d jnz 22
9: 8b d8 movl ebx,eax
11: 03 da addl ebx,edx
13: 70 07 jo 22
15: 8b c3 movl eax,ebx
17: f8 clc
18: 8b 75 fc movl esi,[ebp-4]
21: c3 ret
22: 8b 5f 8f movl ebx,[edi-113] ; EXCL::+_2OP
25: ff 67 27 jmp *[edi+39] ; SYS::TRAMP-TWO

The C programmer should expect just addl of Location 11.

2.2 Polymorphism

Lisp is a dynamic typing language; the types of varialbles may change at runtime (aka polymorphism).
Most of built-in functions do coercion (aka ad-hoc polymorphism) at execution time. For example, eval-
uating the form (+ x y) executes addition of integral, rational, floating, or complex depending on the
arguments.

To implement such polymorphism, Lisp variables holds pointers to objects instead of objects itself.
When C language simply add two integers, Lisp firstly needs to get objects by referencing pointers, then
extract two integer values from the objects, add the two values, and finally the sum must be stored into
a lisp object of type integer, and the pointer of the object is returned as the result. This complected
processes are thus implemented as the function EXCL::+ 2OP.

To solve this terrible situation, Lisp employs special representation for small integers called fixnum
type. By this representation, fixnum integers are stored directory into Lisp variables. If the pointer value
of a Lisp variable is a multiple of 4, it is regarded as a fixnum value (with 4 times), instead of a pointer
to a object. For each Lisp variable, its low 2 bits are, in this way, used as a tag bits. This fixnum tag
expression is used in ACL, SBCL, and LispWorks.
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In the generated code of int-add-2 at Location 2, incoming arguments (via eax and edx) are firstly
checked their tag bits, and both of them are fixnum, they can be added by addl instruction, otherwise
call universal procedure EXCL::+ 2OP.

What the C programmer really wanted is just addition of simple integer, not of complex numbers. For
this purpose, additional declaration that allow compiler to assume the type of specified variable is always
fixnum is as follows.

(defun int-add-1 (x y)
(declare (optimize (speed 3) (safety 0) (debug 0))

(type fixnum x y))
(+ x y))

By doing this, the following code the C programmer wanted is generated (prologue and epilogue codes are
ommited).

SBCL and LispWorks also accept similar type declaration, but there is a subtle difference. Unlike
ACL, SBCL and LispWorks do not assume the resulting type of fixnum operation to be fixnum. Thus,
the last line of the above example shuld be (the fixnum (+ x y)). From now on, we take the ACL’s
simpler assumption for brevity. And when a program in this report is compiled with SBCL or LispWorks,
each fixnum operations are previously enclosed with (the fixnum ...).

0: 03 c2 addl eax,edx

Of course, the C programmer should understand that fixnum type is not equal to int of C because
2 bits are used for tag of fixnum. Unlike addition and multiplication, some operations, such as division,
cannot directly be applied. They need a care of the tags.

3 Evaluation of code optimization

In this section, we will investigate which Lisp compiler does which code optimization.

3.1 Constant folding

We begin with a simple constant folding. The object code of the following program will give us whether
a Lisp compiler do or do not the optimization. In this case is very simple since the arguments of + are all
constants. In fact, this is just constant computation at compile time.

(defun test-const-fold-1 ()
(declare (optimize (speed 3) (safety 0) (debug 0)))
(+ 1 2 3))

ACL compiler generates the following object code. Constant compuations are apparently performed. The
register eax used for return value is set to 24 instad of 6. This is because the needed conversion to fixnum
tag expression.

Generated code actually includes miscellaneous code, such as prologue and epilogue code, constant
table setting-up code, etc. We will ommit them from now on for brevity.

0: b8 18 00 00 movl eax,$24 ; 6

SBCL compiler also performs the constant computation as the following generated code shows. SBCL use
edx as the return value register.

0AE0E03A: BA18000000 MOV EDX, 24

LispWorks compiler also performs as the following shows. Return value register is eax like ACL compiler.

0: B818000000 move eax, 18

In general, constant folding attempt for a given expression to gather up constant parts of it by using
algebraic identities, and fold the gathered parts. Thus, it is not so simple. For example, the constant
folding module of GCC (GNU C compiler) has over 10000 lines. For example, GCC can perform the
following constant folding.
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(1+n)+(n+2)*2 → 3*n + 5

One might think that such optimization is not serious because skillful programmers can do this by coding
time. But these redundant expressions often arise a result of various optimizations. Thus optimizing
compilers often call constant folding after those optimizations. And the folding is important to improve
the quality of the next code optimizations.

Therefore a compiler performing good code optimizations has a good constant folder. in other words,
poor constant folder reveals poor code optimizations. The following is a program for testing simple
constant folding; the expression should be folded to 0 (fixnum).

(defun test-const-fold-2 (n)
(declare (optimize (speed 3) (safety 0) (debug 0))

(type fixnum n))
(+ 1 n -1 (- n)))

ACL does not perform this constant folding as the following generated code shows.

2: 83 c3 04 addl ebx,$4
5: 83 c3 fc addl ebx,$-4
8: 33 d2 xorl edx,edx
10: 2b d0 subl edx,eax
12: 8b c3 movl eax,ebx
14: 03 c2 addl eax,edx

The policy of arithmetics of fixnum-type declared values of SBCL and LispWorks is different from
that of ACL, and enclosing sub-expressions of (+ 1 n -1 (- n)) with (the fixnum ...) may block the
folding of them. Thus in this case, we give the program as-is to SBCL and LispWorks. After all, however,
they do not perform fold for this case. SBCL generates the following code, which shows the fact.

0A950DDD: 8D4201 LEA EAX, [EDX+1]
E0: 83C0FF ADD EAX, -1
E3: F7DA NEG EDX
E5: 01D0 ADD EAX, EDX
E7: 6BD004 IMUL EDX, EAX, 4

... snip ...

And the generated code by LispWorks is as follows, which also shows the fact.

0: 55 push ebp
1: 89E5 move ebp, esp
3: 50 push eax
4: 6A04 pushb 4
6: B502 moveb ch, 2
8: 8B45FC move eax, [ebp-4]
11: FF15BCF90320 call [2003F9BC] ; SYSTEM:+$FIXNUM

... snip ...

3.2 Constant propagation

Next, we investigate constant propagation by inspecting the generated code of the following program. If
a compiler do the optimization, the generated code should simply return the constant 3.

(defun test-const-propagation-1 ()
(declare (optimize (speed 3) (safety 0) (debug 0)))
(let ((a 1)

(b 2))
(+ a b)))

ACL generates the following code.
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0: bb 04 00 00 movl ebx,$4 ; 1
00

5: ba 08 00 00 movl edx,$8 ; 2
00

10: 8b c3 movl eax,ebx
12: 03 c2 addl eax,edx

As this shows, constant propagation is not performed in ACL. Macro feature of Lisp is very powerful.
Incorporating work of constant propagation and constant folding may drastically simplify macros. Thus
not only for numerical computations, this optimization should be essential for extensive use of macros.

SBCL and LispWorks, on the other hand, performs constant propagation for the above simple case
that let binded constant value variables are simply used. The following code is by SBCL (LispWorks also
generates similar code).

BA0C000000 MOV EDX, 12

But the compilers give up to propagate when a subject let binded variable is assigned some value
because the following program that can apparently propagate constants shows.

(defun test-const-propagation-2 ()
(declare (optimize (speed 3) (safety 0) (debug 0)))
(let ((a 1)

(b 2))
(declare (type fixnum a b))
(setq a (the fixnum (+ a b)))
a))

SBCL fails to propagete the constants.

0AADC782: B804000000 MOV EAX, 4
87: 83C008 ADD EAX, 8

LispWorks also fails.

0: 83C004 add eax, 4
3: 83C00C add eax, C

Although Lisp is a functional programming language, actual programs include many assignment. To
use macros at ease, these optimization should be essential.

3.3 Common-subexpression elimination

It is rare a complex common-subexpression appears in a source program directly because such program is
less readable and also hard to maintain. But repeating small expressions, such as i+1 is not unusual.

More serious things are the existence of ‘hidden’ common-subexpressions. Calculations of indices of an
array is a typical example. Even A[i]+B[i] includes two common-subexpressions, namly, multiplications
of i and the size of array elements. Thus, this optimization is essential for numerical computations that
use many arrays. The following test program has the three common-subexpressions, (- x y).

(defun test-common-subexpression-elimination (x y)
(declare (optimize (speed 3) (safety 0) (debug 0))

(type fixnum x y))
(+ (- x y) (- x y) (- x y)))

ACL generates the following code.

12: 8b d8 movl ebx,eax ; eax=x
14: 2b da subl ebx,edx ; edx=y <<
16: 89 45 dc movl [ebp-36],eax
19: 29 55 dc subl [ebp-36],edx <<
22: 03 5d dc addl ebx,[ebp-36]
25: 8b c8 movl ecx,eax
27: 2b ca subl ecx,edx <<
29: 8b d1 movl edx,ecx
31: 8b c3 movl eax,ebx
33: 03 c2 addl eax,edx
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ACL does not perform this optimization because there is three subtractions here. There is also a register
spill here as the work on frame [ebg-36] is used. If the optimization is performed, the following concise
code would be possible.

subl eax,edx
movl edx,eax
addl edx,eax
addl edx,eax
movl eax,edx

SBCL and LispWorks also do not performe this optimization and the subtraction is repeated three times.
See appendix for their generated codes.

3.4 Loop optimization

Finally, as a basic loop optimization, we take loop invariant hoisting. Like common-subexpressions elimi-
nation, complex loop invariant expressions do not usually appear directory in souce programs. But there
are still ‘hidden’ loop invariants, such as index calculations and loops generated by macros. This opti-
mization is essential for numerical computations that use many loops. The following program has the loop
invariant expression (+ n 10).

(defun test-loop-invariant-hoisting (n)
(declare (optimize (speed 3) (safety 0) (debug 0))

(type fixnum n))
(let ((s 0))
(declare (type fixnum s))
(dotimes (i n)
(incf s (+ n 10)))

s))

ACL generates the following code.

21: 89 45 d8 movl [ebp-40],eax
24: 83 45 d8 28 addl [ebp-40],$40 ; 10
28: 03 5d d8 addl ebx,[ebp-40]
31: 83 c2 04 addl edx,$4
34: 3b 55 dc cmpl edx,[ebp-36]
37: 7c ee jl 21

ACL does not perform this optimization because the loop invariant (+ n 10) is still in loop. SBCL and
LispWorks also do not perform this optimization. See appendix for their generated codes.

3.5 Conclusion of this section

Each Lisp compiler does not perform any traditional code optimizations. Although there are more tra-
ditional optimizations, but those also should not be performed since optimizations mentioned above are
very basic ones.

4 Evaluation of register allocation

One might think that compilers performing code optimizations are called optimizing compiler. It is not
false, but instruction selection and register allocation is more important than the code optimizations. If
these part is poor, effort to improve code optimizatoin is nonsence.

Unlike evaluations of code optimizations, it is hard to decide what techniques are used in instruction
selection and register allocation by just inspecting generated object codes. Thus, we mainly investigate
the real registers that can be assigned to virtual registers. We call here the set general registers simply.

Usually, a compiler does not use all of the real registers of the target machine. For example, sepcial
purpose registers, such as program counter, stack pointer and frame pointer cannot be used as a general
register. Or, compiler may use some registers for special purpose. Such design restricts possible general
registers.

7



On X86 CPU, possible general registers are, by excluding program counter, stack pointer, frame
pointer, and condition code from all registers, only 6 registers, namely eax, ebx, ecx, edx, esi, and edi.
For each compiler, we investigate its general registers by inspecting programs with high register pressure
(program with high possibility of register spills).

4.1 ACL

We use the following program pattern to tune register pressure.

(defun test-regalloc-nreg-3 (x)
(declare (optimize (speed 3) (safety 0) (debug 0))

(type fixnum x))
(let ((y1 (+ x 1))

(y2 (+ x 2))
(y3 (+ x 3)))

(+ y1 y2 y3)))

ACL generates the following beautiful code that each variable is assigned to a general register.

0: 8b d8 movl ebx,eax
2: 83 c3 04 addl ebx,$4
5: 8b d0 movl edx,eax
7: 83 c2 08 addl edx,$8
10: 83 c0 0c addl eax,$12
13: 03 da addl ebx,edx
15: 03 c3 addl eax,ebx

Next, we increase register pressure.

(defun test-regalloc-nreg-4 (x)
(declare (optimize (speed 3) (safety 0) (debug 0))

(type fixnum x))
(let ((y1 (+ x 1))

(y2 (+ x 2))
(y3 (+ x 3))
(y4 (+ x 4)))

(+ y1 y2 y3 y4)))

At this point, a register spill arise.

12: 8b d8 movl ebx,eax
14: 83 c3 04 addl ebx,$4
17: 8b d0 movl edx,eax
19: 83 c2 08 addl edx,$8
22: 89 45 dc movl [ebp-36],eax
25: 83 45 dc 0c addl [ebp-36],$12
29: 83 c0 10 addl eax,$16
32: 03 da addl ebx,edx
34: 03 5d dc addl ebx,[ebp-36]
37: 03 c3 addl eax,ebx

After all, ACL compiler uses only the three registers eax, ebx, and edx as general registers. We
could not find the usage policy of ecx. It is sometimes used as a loop index variable and sometimes as
a temporary. And in ACL, esi and edi are used to hold basis of constant table and built-in function
table, respectively. For example, generated code of a program including (cons (+ x 1) 1.23) includes
the following code fragment.

0: 8b 56 12 movl edx,[esi+18] ; 1.23
3: 8b 5f 8f movl ebx,[edi-113] ; EXCL::+_2OP

...............

Real registers esi and edi are used only for this purposes. Lisp must implement a dynamic linking
facility. This fixed usage may due to the situation. Such approach should be natural for RISC machines
with rich registers, but not for poor register machines, such as X86.
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For a reference, we also investigate ACL for SPARC. SPARC has 8 global reigsters, 8 local reigsters and
6 IO registers. These registers can be used freely under the condition of the SPARC calling convention.
The following is the object code for program of increased register pressure test-regalloc-nreg-4. There
are no spills here. See also appendix.

4: 98062004 add %i0, #x4, %o4
8: 96062008 add %i0, #x8, %o3
12: 9406200c add %i0, #xc, %o2
16: 92062010 add %i0, #x10, %o1
20: 90062014 add %i0, #x14, %o0
24: a0062018 add %i0, #x18, %l0
28: a206201c add %i0, #x1c, %l1
32: a4062020 add %i0, #x20, %l2
36: a6062024 add %i0, #x24, %l3
40: a8062028 add %i0, #x28, %l4
44: 9803000b add %o4, %o3, %o4
48: 9803000a add %o4, %o2, %o4
52: 98030009 add %o4, %o1, %o4
...

4.2 SBCL and LispWorks

For ACL, test-regalloc-nreg-4 causes spills but SBCL does not as the following generated code shows.
LispWorks also does not.

0AF62E75: 8D4201 LEA EAX, [EDX+1]
78: 8D4A02 LEA ECX, [EDX+2]
7B: 8D5A03 LEA EBX, [EDX+3]
7E: 8D7204 LEA ESI, [EDX+4]
81: 8D1408 LEA EDX, [EAX+ECX]
84: 01DA ADD EDX, EBX
86: 01F2 ADD EDX, ESI
88: C1E202 SHL EDX, 2

We investigate the spill threshold by increasing register pressure, like in the case of ACL, SBCL and
LispWorks use all of the possible registers eax, ebx, ecx, edx, esi, and edi as their general registers.
The source of this advantage is implementations of their dynamic linkers. Unlike ACL, dynamic linkers
of SBCL and LispWorks stores absolute addresses into the generated codes as follows and thus do not use
special base registers.

MOV EDI, [#xB0F24F0] ; 1.23
CALL #x1000140 ; GENERIC-+

4.3 Conclusion of this section

We guess that ACL firstly imported on a rich register machine. Thus the design of its dynamic linker is
based on the machine. But for X86, only 3 registers are apparently insufficient. ACL (for x86) needs to
modify the design of the dynamic linker to free the base registers esi and edi. This is not a problem of
the register allocator.

LispWorks say in a document that their register allocator is a graph coloring allocator. We do not
know what algorithms are used for register allocators of ACL and SBCL.

Finally, we mention instruction selection of SBCL. SBCL often generates LEA instruction as follows.

81: 8D1408 LEA EDX, [EAX+ECX]

This code skillfully performs EDX = EAX + ECX by using addressing mode computation and LEA. On the
other hand, we never see such code in generated code by ACL. We think that instruction selector of SBCL
is better than that of ACL and LispWorks, but we do not know whether SBCL has a retargetable code
generator.
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5 Evaluation of floating-point arithmetics

Floating-point arithmetics are very important for numerical computations. For floating point numbers, it
is impossible to keep them in variables directly by tagging like fixnum, and thus all floating point numbers
are boxed. This is a serious reason why Lisp is not good at numerical computations.

But within a function, it is possible to use unboxed (raw) floating values. At the entry point of the
function, floating values could be unboxed, and the only need to box the result at the function return.

Since X86 only supports 80 bits floating point arithmetics, this optimization is applied to double-
float type (64 bits). X86 has 8 floating point registers st(0) .. st(7). The structure of them is very
different from conventional real registers because the first operand of a operation must be stored in st(0)
(abbreviated as st), and after the operation, st(0) is replaced with the result of the operation, and st(1)
is replaced with st(2), st(2) with st(3) and so on. That is, so to speak, a stack structure.

Therefore, standard register allocation method cannot be applied, but ACL, SBCL and LispWorks
implement this optimization. The following program adds two double-float numbers.

(defun test-float-add (a b)
(declare (optimize (speed 3) (safety 0) (debug 0))

(type double-float a b))
(+ a b))

ACL generates the following code. (unboxing and boxing codes are omitted)

0: dd 42 f6 fldq [edx-10]
3: dd da fstp st(2)
5: dd 40 f6 fldq [eax-10]
8: dd db fstp st(3)
10: d9 c1 fld st,st(1)
12: d8 c3 fadd st,st(3)
14: dd da fstp st(2)
16: d9 c1 fld st,st(1)
18: dd d9 fstp st(1)

In the function body, raw (unboxed) floating-point numbers are directly processed with real instructoins.
SBCL also generates simular concise code.

To enable this optimization, LispWorks requires additional declaration (float 0) in (declare (optimize
.... The following LispWorks’s generated code is redundant compared to that of ACL or SBCL.

11: 8B7D08 move edi, [ebp+8]
14: DD4705 fldl [edi+5]
17: DD4005 fldl [eax+5]
20: DEC1 faddp st(1), st
22: DD5DF8 fstpl [ebp-8]
25: 83EC08 sub esp, 8
28: 8B75F8 move esi, [ebp-8]
31: 8975F0 move [ebp-10], esi
34: 8B75FC move esi, [ebp-4]
37: 8975F4 move [ebp-C], esi
40: 8B7500 move esi, [ebp]
43: 8975F8 move [ebp-8], esi
46: 83ED08 sub ebp, 8
49: 8B750C move esi, [ebp+C]
52: 897504 move [ebp+4], esi
55: DD45F8 fldl [ebp-8]
58: DD5D0C fstpl [ebp+C]

6 Bench marks

In this section, we compare execution time for each generated object code by ACL, SBCL and LispWorks.

6.1 Integer arithmetics and spill

The following program has only fixnum arithmetics. By the type declaration, there are no boxed integer
and all operations are inlined. Thus, in fact, this test is intended to evaluate the efficiency of register
allocators.
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(defun test-intop-spill (n)
(declare (optimize (speed 3) (safety 0) (debug 0))

(type fixnum n))
(let ((sum 0))
(declare (type fixnum sum))
(dotimes (i n)
(dotimes (j n)
(dotimes (k n)
(incf sum))))

sum))

ACL generates the following code. As ACL utilize only 3 registers as general registers, some spills arise
here.

6: 89 75 fc movl [ebp-4],esi
9: 89 5d e4 movl [ebp-28],ebx
12: 33 db xorl ebx,ebx
14: 33 d2 xorl edx,edx
16: 89 45 d8 movl [ebp-40],eax ; EXCL::LOCAL-1
19: 3b 55 d8 cmpl edx,[ebp-40] ; EXCL::LOCAL-1
22: 7c 08 jl 32
24: 8b c3 movl eax,ebx
26: f8 clc
27: c9 leave
28: 8b 75 fc movl esi,[ebp-4]
31: c3 ret
32: 89 5d dc movl [ebp-36],ebx ; EXCL::LOCAL-0
35: 33 db xorl ebx,ebx
37: 89 45 d4 movl [ebp-44],eax ; EXCL::LOCAL-2
40: 3b 5d d4 cmpl ebx,[ebp-44] ; EXCL::LOCAL-2
43: 7c 08 jl 53
45: 83 c2 04 addl edx,$4
48: 8b 5d dc movl ebx,[ebp-36] ; EXCL::LOCAL-0
51: eb de jmp 19
53: 89 55 d0 movl [ebp-48],edx ; EXCL::LOCAL-3
56: 33 d2 xorl edx,edx
58: 89 45 cc movl [ebp-52],eax ; EXCL::LOCAL-4
61: eb 07 jmp 70
63: 83 45 dc 04 addl [ebp-36],$4 ; EXCL::LOCAL-0
67: 83 c2 04 addl edx,$4
70: 3b 55 cc cmpl edx,[ebp-52] ; EXCL::LOCAL-4
73: 7c f4 jl 63
75: 83 c3 04 addl ebx,$4
78: 8b 55 d0 movl edx,[ebp-48] ; EXCL::LOCAL-3
81: eb d5 jmp 40

SBCL generates the following code that has no spills and concise.

0B0D20AA: 31C0 XOR EAX, EAX
AC: 31FF XOR EDI, EDI
AE: EB20 JMP L5
B0: L0: 31C9 XOR ECX, ECX
B2: EB13 JMP L4
B4: L1: 31DB XOR EBX, EBX
B6: EB06 JMP L3
B8: L2: 83C004 ADD EAX, 4
BB: 83C304 ADD EBX, 4
BE: L3: 8BF2 MOV ESI, EDX
C0: 39F3 CMP EBX, ESI
C2: 7CF4 JL L2
C4: 83C104 ADD ECX, 4
C7: L4: 8BDA MOV EBX, EDX
C9: 39D9 CMP ECX, EBX
CB: 7CE7 JL L1
CD: 83C704 ADD EDI, 4
D0: L5: 39D7 CMP EDI, EDX
D2: 7CDC JL L0
D4: 8BD0 MOV EDX, EAX
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D6: 8D65F8 LEA ESP, [EBP-8]
D9: F8 CLC
DA: 8B6DFC MOV EBP, [EBP-4]
DD: C20400 RET 4

LispWorks generates the following code which has some spills and somewhat redundant.

20: 33FF xor edi, edi
22: 837DF400 cmp [ebp-C], 0
26: 7E3E jle L5
28: 33DB xor ebx, ebx
30: 8B75F4 move esi, [ebp-C]
33: 83EE04 sub esi, 4
36: 8975F8 move [ebp-8], esi

L1: 39: 837DF400 cmp [ebp-C], 0
43: 7E32 jle L6
45: 33C9 xor ecx, ecx
47: 8B75F4 move esi, [ebp-C]
50: 83EE04 sub esi, 4
53: 8975FC move [ebp-4], esi

L2: 56: 837DF400 cmp [ebp-C], 0
60: 7E2D jle L7
62: 33D2 xor edx, edx
64: 8B45F4 move eax, [ebp-C]
67: 83E804 sub eax, 4

L3: 70: 83C704 add edi, 4
73: 3BD0 cmp edx, eax
75: 7D1E jge L7
77: 83C204 add edx, 4
80: 8955F0 move [ebp-10], edx
83: EBF1 jmp L3

L4: 85: E8A6A90700 call 20114962
L5: 90: C9 leave

91: 89F8 move eax, edi
93: FD std
94: C3 ret

L6: 95: 3B5DF8 cmp ebx, [ebp-8]
98: 7DF6 jge L5
100: 83C304 add ebx, 4
103: 89DA move edx, ebx
105: EBBC jmp L1

L7: 107: 89CA move edx, ecx
109: 3B55FC cmp edx, [ebp-4]
112: 7DED jge L6
114: 83C104 add ecx, 4
117: 89CA move edx, ecx
119: EBBF jmp L2

The execution times on a X86 Linux machine with n = 2000 are as follows. This results shows the
importance of register allocator.

SBCL 5.183 sec
LispWorks 7.577 sec
ACL 12.640 sec

6.2 Floating point arithmatics

The following function is a performance clinical part of a graph drawing function cited from a real appli-
cation. Most operations are floating arithmetics here.

(defstruct bmk-kk-position
(x 0 :type fixnum)
(y 0 :type fixnum))

(defmacro expt2 (x)
(let ((y (gensym)))
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‘(let ((,y ,x)) (* ,y ,y))))

(defun bmk-kk-Exm (nvec dist L m xm ym)
(declare (optimize (speed 3) (safety 0) (debug 0) #+lispworks (float 0))

(type (simple-array t (*)) nvec)
(type (simple-array fixnum (* *)) dist)
(type double-float L)
(type fixnum m xm ym))

(let ((sum 0.0d0))
(declare (type double-float sum))
(dotimes (i (length nvec))
(unless (= i m)
(let* ((p (aref nvec i))

(xi (bmk-kk-position-x p))
(yi (bmk-kk-position-y p)))

(declare (type fixnum xi yi))
(let ((ym-yi (float (- ym yi) 0.0d0))

(xm-xi (float (- xm xi) 0.0d0)))
(incf sum (/ (- xm-xi (/

(* L (aref dist m i)
xm-xi)

(sqrt (the (double-float 0.0d0 *)
(+ (expt2 xm-xi)

(expt2 ym-yi))))))
(expt2 (float (aref dist m i) 0.0d0))))))))

sum))

The execution times with nvec of 1000 elements and 10000 times calling of the function are as follows.

SBCL 0.400 sec
ACL 2.730 sec
LispWorks 9.440 sec

7 Conclusion

Each compiler can generate real instructions with real register allocation, which are basic requirements for
real compilers. But their qualities are very different. Concerning this points, we think, the first is SBCL,
and then ACL and LispWorks.

The most serious problem of ACL is its register usage. For X86, ACL uses only 3 registers as general
registers. Thus spills easily arise.

This is not the problem of the register allocator but the problem of the policy of register usage. Anyway
and unfortunately, X86 is the most widely used CPU. Thus, ACL needs to improve this to generate good
code for X86.

Any compiler does not do useful code optimizations. But Lisp is a general purpose programming
languate now and programmers expect Lisp to perform code optimizations. Common Lisp uses lexical
scope and its specification is rigorously defined. And there are no problematical features such as com-
mon, equivalence in Fortran, or unlimited pointers in C. Thus, we think, implementing the optimizations
mentioned in this report in Lisp seems not hard.

In other words, any Lisp compiler can be improved more. Lisp has high productivity with mature
develop environment. Lisp should be wildly used. Therefore, we expect a Lisp compiler which perform
optimizations we mentioned in this report.

A Comments to section 3

The generated codes for test program of common-subexpressions elimination and loop optimization by
SBCL and LispWorks, ommited in section 3, are as follows.

A.1 SBCL

This is the generated code for test-common-subexpression-elimination. Common-subexpression elim-
ination is not performed as it has three subtractions.
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0AE9670A: 8BC2 MOV EAX, EDX
0C: 29F8 SUB EAX, EDI <<
0E: 8BC8 MOV ECX, EAX
10: 8BC2 MOV EAX, EDX
12: 29F8 SUB EAX, EDI <<
14: 01C1 ADD ECX, EAX
16: 29FA SUB EDX, EDI <<
18: 01D1 ADD ECX, EDX
1A: 8BD1 MOV EDX, ECX

This is the generated code for test-loop-invariant-hoisting. The loop invariant (+ n 10) is not
moved outside of the loop.
0AE75C82: 31C0 XOR EAX, EAX

84: 31C9 XOR ECX, ECX
86: EB13 JMP L1
88: L0: 8BDA MOV EBX, EDX
8A: C1FB02 SAR EBX, 2
8D: 83C30A ADD EBX, 10 <<
90: C1F802 SAR EAX, 2
93: 01D8 ADD EAX, EBX
95: C1E002 SHL EAX, 2
98: 83C104 ADD ECX, 4
9B: L1: 39D1 CMP ECX, EDX
9D: 7CE9 JL L0
9F: 8BD0 MOV EDX, EAX

A.2 LispWorks

This is the generated code for test-common-subexpression-elimination. Common-subexpression elim-
ination is not performed as it has three subtractions.

0: 8B7C2404 move edi, [esp+4]
4: 89FB move ebx, edi
6: 2BD8 sub ebx, eax <<
8: 89FA move edx, edi
10: 2BD0 sub edx, eax <<
12: 03DA add ebx, edx
14: 2BF8 sub edi, eax <<
16: 8D043B lea eax, [ebx+edi]

This is the generated code for test-loop-invariant-hoisting. The loop invariant (+ n 10) is not
moved outside of the loop.

0: 89C1 move ecx, eax
2: 33FF xor edi, edi
4: 83F900 cmp ecx, 0
7: 7E21 jle L2
9: 55 push ebp
10: 89E5 move ebp, esp
12: 50 push eax
13: 33DB xor ebx, ebx
15: 89CE move esi, ecx
17: 83EE04 sub esi, 4
20: 8975FC move [ebp-4], esi

L1: 23: 8D4128 lea eax, [ecx+28] << 28H = 4 * 10
26: 03C7 add eax, edi
28: 89C7 move edi, eax
30: 3B5DFC cmp ebx, [ebp-4]
33: 7D0B jge L3
35: 83C304 add ebx, 4
38: 89DA move edx, ebx
40: EBED jmp L1

L2: 42: 89F8 move eax, edi
44: FD std
45: C3 ret

L3: 46: C9 leave
47: EBF9 jmp L2
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B 64 bits CPU

Recently, 64 bits CPUs, such as X86-64, are about to be used widely. Our experience shows that some
ACL applications, firstly developed on X86, run significantly faster on X86-64 by just re-compiling them.
We describe one of the essential reasons by comparing generated codes by ACL for X86 and X86-64.

The enhancement for X86-64 includes bitwidth extensions of the registers to 64, and also increasing the
number of registers to 16. The latter is, we think, the reason for the significant performance improvement
on X86-64 because ACL generates for test-regalloc-nreg-4 the following spill-less concise code for
X86-64; its generated code included spills for X86.

0: 4c 8b ef movq r13,rdi
3: 49 83 c5 08 add r13,$8
7: 4c 8b e7 movq r12,rdi
10: 49 83 c4 10 add r12,$16
14: 4c 8b df movq r11,rdi
17: 49 83 c3 18 add r11,$24
21: 48 83 c7 20 add rdi,$32
25: 4d 03 ec addq r13,r12
28: 4d 03 eb addq r13,r11
31: 49 03 fd addq rdi,r13

The result we investigate the spill threshold by the similar way shows that ACL use 9 registers of X86-64
as its general registers. The following concise code is for X86-64 of test-intop-spill whose generated
code included many spills for X86.

0: 45 33 ed xorl r13d,r13
3: 45 33 e4 xorl r12d,r12
6: 4c 8b df movq r11,rdi
9: 4d 3b e3 cmpq r12,r11
12: 7c 0a jl 24
14: 49 8b fd movq rdi,r13
17: f8 clc
18: 4c 8b 74 24 10 movq r14,[rsp+16]
23: c3 ret
24: 45 33 c9 xorl r9d,r9
27: 4c 8b c7 movq r8,rdi
30: 4d 3b c8 cmpq r9,r8
33: 7c 06 jl 41
35: 49 83 c4 08 add r12,$8
39: eb e0 jmp 9
41: 33 c9 xorl ecx,ecx
43: 48 8b d7 movq rdx,rdi
46: eb 08 jmp 56
48: 49 83 c5 08 add r13,$8
52: 48 83 c1 08 add rcx,$8
56: 48 3b ca cmpq rcx,rdx
59: 7c f3 jl 48
61: 49 83 c1 08 add r9,$8
65: eb db jmp 30

And the execution times with n = 2000 are as follows.

X32 21.344 sec
X32-64 4.992 sec

The spill-less code for X32-64 runs about 4 times faster.

C SMP LispWorks

Recently, multi-core CPUs are about to be used widely. Lisp systems supporting such CPU can divide a
given task into some Lisp threads and feeds them to the cores; this can improve the throughput aggressively.

Concurrent LispWorks 6.0 is such a Lisp system. We show, for reference, the evaluation result of the
Lisp on the multi-core CPU Xeon(R) 2GHz with 8 CPUs.
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(defun parallel-naive-pi (&optional (nproc 1) (ntimes 1))
;; Calculates pi using NPROC processes with initial function naive-pi.
(let ((pis (make-list (* nproc ntimes) :initial-element 0)))
(format t "Nproc=~d RealTime:" nproc)
(dotimes (i ntimes)
(let ((lock (#+allegro mp:make-process-lock

#+lispworks mp:make-lock))
(nrests (list nproc))
(time (get-internal-real-time)))

;; Create NPROC processes.
(loop

for i from 1 to nproc
for c on pis
do (mp:process-run-function (format nil "~d" i)

;; Each process records its (actually the same) result
;; to the list, then increments the semaphore and exit.
#+lispworks nil
#’(lambda (c)

(setf (car c) (naive-pi))
(#+allegro mp:with-process-lock
#+lispworks mp:with-lock
(lock)
(decf (car nrests))))

c))
;; Wait for the processes to complete.
(mp:process-wait "wait" #’(lambda (x) (zerop (car x))) nrests)
(format t " ~s" (/ (float (- (get-internal-real-time) time))

internal-time-units-per-second))))
(format t "~%")
;; Returns the mean of results from the processes.
(/ (apply #’+ pis) (* nproc ntimes))))

(defun naive-pi (&optional (n #xfffffff))
;; Calculates pi using the Gregory series of N (<= #xfffffff) terms.
(declare (optimize (speed 3) (safety 0) (debug 0) #+lispworks (float 0))

(type fixnum n))
(* 4.0d0 (loop

for i fixnum from 1 to n
for k fixnum = 1 then (+ k 2)
for s of-type double-float = 1.0d0 then (- s)
sum (/ s (float k 0.0d0)) of-type double-float)))

The function parallel-naive-pi runs nproc threads in parallel that each of them executes a relatively
heavy numerical computation naive-pi with synchronization that waits until all of the threads halt and
prints the execution time; this trial is repeated ntimes times. The following list is the execution result of
the function with nproc = 1 .. 24 and ntimes = 4.

CL-USER 3 > (loop for n from 1 to 24 do (parallel-naive-pi n 4))
Nproc=1 RealTime: 10.282 10.234 10.281 10.235
Nproc=2 RealTime: 10.282 10.281 10.281 10.297
Nproc=3 RealTime: 10.281 10.281 10.282 10.297
Nproc=4 RealTime: 10.281 10.281 10.281 10.297
Nproc=5 RealTime: 10.281 20.563 20.562 20.532
Nproc=6 RealTime: 10.281 10.281 20.578 20.563
Nproc=7 RealTime: 10.281 10.281 20.485 20.515
Nproc=8 RealTime: 10.453 20.532 20.515 30.813
Nproc=9 RealTime: 20.5 20.5 20.078 20.516
Nproc=10 RealTime: 20.109 20.578 20.313 20.343
Nproc=11 RealTime: 20.563 20.531 30.578 20.516
Nproc=12 RealTime: 30.5 30.937 30.453 30.954
Nproc=13 RealTime: 30.593 30.844 20.313 30.796
Nproc=14 RealTime: 30.594 30.844 30.562 30.75
Nproc=15 RealTime: 30.61 30.844 40.687 30.828
Nproc=16 RealTime: 40.813 30.984 21.672 41.187
Nproc=17 RealTime: 41.079 40.859 30.969 31.218
Nproc=18 RealTime: 31.235 41.015 41.094 41.328
Nproc=19 RealTime: 41.125 41.141 41.281 41.406
Nproc=20 RealTime: 37.485 41.39 35.922 41.141
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Nproc=21 RealTime: 38.594 41.25 50.89 41.125
Nproc=22 RealTime: 36.391 51.75 38.953 51.516
Nproc=23 RealTime: 51.375 51.531 51.391 39.5
Nproc=24 RealTime: 51.421 33.016 51.375 33.031

Although the measured times for each trial somewhat unstable, each load of a trial is evenly shared until
nproc = 8 which is the number of cores, and even for further nproc, loads increase smoothly.

ACL also implements multi-threading, but unfortunately does not support multi-core CPUs as the
following result shows, which is measured in the same condition.

CG-USER(4): (loop for n from 1 to 10 do (parallel-naive-pi n 4))
Nproc=1 RealTime: 9.078 9.062 9.063 9.062
Nproc=2 RealTime: 18.047 18.063 18.046 18.094
Nproc=3 RealTime: 27.078 27.11 27.156 27.187
Nproc=4 RealTime: 36.157 36.14 36.094 36.188
Nproc=5 RealTime: 45.14 45.219 45.25 45.188
Nproc=6 RealTime: 54.203 54.234 54.141 54.156
Nproc=7 RealTime: 63.406 63.172 63.297 63.219
Nproc=8 RealTime: 72.39 72.266 72.313 72.312
Nproc=9 RealTime: 81.313 81.25 81.406 81.266
Nproc=10 RealTime: 90.297 90.344 90.343 90.391

Apparently, each load of tasks is not shared by 8 cores. We would like to expect ACL to support multi-core
CPUs.
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